Ferulic acid induces mammalian target of rapamycin inactivation in cultured mammalian cells.
نویسندگان
چکیده
Ferulic acid (FA), a naturally occurring polyphenol abundant in vegetables and rice bran, is known to possess a potent antioxidant activity, thereby protecting cells from oxidative stress. In the present study, we show that in addition to its known anti-oxidant activity, ferulic acid exerts substantial inhibitory activity on cellular mammalian target of rapamycin (mTor)-signaling pathways. In HeLa cells and mouse primary hepatocytes cultured with conventional nutrient-rich media, ferulic acid (1 mM) elicited dephosphorylation of S6 kinase and its substrate ribosomal S6. The dephosphorylating activity of ferulic acid was almost comparable to that of rapamycin, an established mTor inhibitor (TORC1). We next investigated the effect of ferulic acid on autophagy, a major cellular degradative process, which significantly contributes to the maintenance of cell homeostasis. Using a conventional green fluorescent protein-microtubule-associated protein IA/IB light chain 3 (GFP-LC3) dot assay to evaluate autophagy flux, we showed that ferulic acid caused a significant increase in GFP-LC3 dots under serum-rich conditions in HeLa cells. The enhancement of autophagic flux by ferulic acid was almost equivalent to that of rapamycin. Furthermore, ferulic acid significantly enhanced autophagic degradation of (14)C-leucine-labeled long-lived proteins of cultured mouse hepatocytes under nutrient-rich conditions, but not nutrient-deprived conditions. These results indicate that ferulic acid is almost the equivalent of rapamycin in the ability to inhibit mTor (TORC1), which makes it a potent activator of basal autophagy.
منابع مشابه
The Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells
Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملRapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell
Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...
متن کاملEvaluation of the Effects of Nicotine on Mammalian Target of Rapamycin Complex 2 and Signal Transducer and Activator of Transcription 3 Genes Expression in a Mouse Model of Allergic Asthma: An experimental study
Background & Aims: Allergic diseases have increased in the last decade worldwide and researchers have been trying to introduce new strategies and drugs to treat these types of diseases. Nicotine shows anti-inflammatory properties and the studies have revealed that it can reduce the inflammation and the allergic responses. The mammalian target of rapamycin (mTOR) is a multifunctional protein kin...
متن کاملThe effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats
Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2013